Quantile regression with interval data
نویسندگان
چکیده
This paper investigates the identification of quantiles and quantile regression parameters when observations are set valued. We define random sets in a way that extends definition for regular variables. then give sharp characterization this by extending concepts from theory. Applying its sharpness to parametric models yields sharpness. apply our methods data on localized environmental benefits their impact house values.
منابع مشابه
Quantile regression with aggregated data
Analyses using aggregated data may bias inference. In this work we show how to avoid or at least reduce this bias when estimating quantile regressions using aggregated information. This is possible by considering the unconditional quantile regression recently introduced by Firpo et al (2009) and using a specific strategy to aggregate the data.
متن کاملQuantile regression with panel data
We propose a generalization of the linear quantile regression model to accommodate possibilities afforded by panel data. Specifically, we extend the correlated random coefficients representation of linear quantile regression (e.g., Koenker, 2005; Section 2.6). We show that panel data allows the econometrician to (i) introduce dependence between the regressors and the random coefficients and (ii...
متن کاملQuantile regression with clustered data Paulo
We show that the quantile regression estimator is consistent and asymptotically normal when the error terms are correlated within clusters but independent across clusters. A consistent estimator of the covariance matrix of the asymptotic distribution is provided and we propose a specification test capable of detecting the presence of intra-cluster correlation. A small simulation study illustrat...
متن کاملQuantile Regression for Longitudinal Data
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometric Reviews
سال: 2021
ISSN: ['1532-4168', '0747-4938']
DOI: https://doi.org/10.1080/07474938.2021.1889201